LUMIS2 returns from successful field work In Bocas del Toro

Last week the CVCE team returned from a very productive trip to Bocas Del Toro in Panama. We worked out of the Smithsonian Tropical Research Institute in Bocas.The field work included a large array of different imaging systems including LUMIS2.

lumis2inbocas

The first few days were devoted to maintaining tags of over 250 corals. After completing the maintenance work, we set out to collect images from all tagged corals, setup new transects, and focus in on nearly 45 targeted corals with six different sample modalities including:

  • White light RGB imaging
  • Fluorescence and reflectance spectrometer data
  • LUMIS and 5D fluorescence imaging
  • PAM data
  • Tissues samples
  • Genetic samples

All told it was a great trip with many successful imaging studies happening in parallel. A big thanks to the whole CVCE team!

MAZOOPS goes out to sea with the Cal-Echoes Cruise

Graduate students Christian Briseno and Lina Lawrence took the second version of our zooplaknton imaging sonar (MAZOOPS) out on the R/V Melville as part of the Cal-Echoes Research Program. This version of MAZOOPS provides high-resolution (~30 micron) optical images and high-frequency, broadband acoustic data from zooplankton. The system willl be used in concert with many other sampling modalities to study the animals in the water column of the Santa Barbara Basin. For more information about the research program go to: http://calechoes.ucsd.edu

24hr MAZOOPS cruise

MAZOOPS 2 set sail for a 24 hr cruise out in the Pacific Ocean on 8/31/2010. Among other design changes, MAZOOPS 1 was updated from using two transmitting and receiving transducers and six receiving transducers to using four transmitting and receiving transducers.  MAZOOPS 2 is a duplicate of MAZOOPS 1 after its updates. The main purpose of this cruise is to test the new design of the system and prepare it for the cruise in the Santa Barbara Basin in late September 2010 and the Gulf of Eilat early 2011. The cruise was a great success. We acquired lots of interesting data and videos of organisms from the surface of the ocean down to 500m below sea surface.

Here are some action pictures of the deployment as well as a video of the dolphins we saw early morning:

MAZOOPS first deployment at sea

We returned yesterday from the first deployment of the new MAZOOPS zooplankton sonar at sea. We were able to deploy the system several times per day, and collected nearly 100 GB of acoustic and image data from two different stations off the coast of San Diego.  Deployments of the MAZOOPS were combined with MOCNESS tows and the two modalities generally showed good agreement.

In total, the system was deployed eleven times during the four day cruise. Typically, the system was deployed running in autonomous mode during the day down to 250 meters, and running in tethered mode with real-time data during the night down to 100 meters.

During the daytime, typical profiles showed that most of the acoustic scattering was down around 250 meters or deeper. These data were supported by images from the low-light-level camera on the MAZOOPS. Image data showed that copepods and euphaussiids were likely the most abundant animals, and these data were confirmed by the MOCNESS tows.

On two occasions, while idling at 30 meters depth, the system encountered very high concentrations of euphausiids which were seen in acoustic data as a dramatic increase in the number of echoes and also the amplitude of these echoes. Image data showed a proportional increase in the number of animals imaged. These small scale features are unlikely to be seen in MOCNESS data (due to its averaging of animal concentrations over much larger scales than the MAZOOPS.

One of the key features of MAZOOPS is the combination of acoustic and optical imaging sensors that image the same field of view, making the system truly multimodal. By combining these data together more information about the type of animal and its orientation are available to aid in understanding acoustic echoes. The multiview nature of the acoustic system can then be used in concert with optical imagery to obtain improved estimates of shape and/or taxa specific abundance.

A big thanks to Jules, Fernando, Florian, Prasanna, Justin, Christian, Gabriel, Paul, the crew of the R/V Sproul, and all of the other team members who made this cruise possible.

Below are a few images from the cruise: