
https://en.wiktionary.org/wiki/%C3%B1
https://en.wiktionary.org/wiki/%C3%B1

,blm h_ &b`nk^l	
&b`nk^ $^l\kbimbhg 0Z`^ .nf[^k

1	 	Whiteboard	Comparison	of	Considered	System	Designs	 					9	

2	 Nanoseeker	 10	

3	 Trident	 10	

4	 Hexbug	 10	

5	 Final	Design	of	the	QUAFFLE	at	the	beach	during	an	Ocean	
Test	

12	

6	 Full	Assembly	CAD	Model	 12	

7	 High	Level	System	Diagram	 13	

8	 Propulsion	System	 13	

9	 3D	Printed	Sealing	Specimens	 15	

10	 Final	Enclosure	Design	 15	

11	 “Build	3-D	Printed”	Buoyancy	into	the	X-Mount	 16	

12	 External	Mechanical	Design	 17	

13	 Ballast	Rods	 18	

14	 Final	Electrical	System	 19	

15		 Raspberry	Pi	3	 20	

16	 High	Level	Electrical	Diagram		 20	

17	 Depiction	of	Euler	Angles	 22	

18	 Blue	Robotics	Bar-30	Pressure	Sensor	 23	

19	 Free	Body	Diagram	and	Coordinate	System	 25	

20	 Control	System	Block	Diagram	 26	

21	 Control	System	Block	Diagram	 28	

22	 Example	of	Object	Tracking	Results	 29	

23	 Data	showing	yaw	and	depth	control	 32	

5

C/C++ programming, when executed properly is known for being one of the most memory efficient
languages in the programming world and is commonly used in the implementation of low level
processes like feedback control. However, many consumer sensors and other breakout boards are often
oriented towards more useroriented objectoriented programing languages like python. In fact, for
many of the sensors and peripherals, in particular, the BNO055 IMU, a compatible C driver for the
Raspberry Pi 3 was nonexistent. In contrast python drivers were readily available for all of the
electrical components, yet concerns of latency issues caused by python memory inefficiencies and lack
of python programing experience made this a poor choice. A final option was a compromise between
these two ideas by having the main control script run in C along with any other compatible C drivers
and the remaining ones running in parallel in Python. By minimizing the total amount of Python scripts
running, it was believed that similar performance to running only in C could be achieved.
Communication of sensor data between the Python and C programs could be achieved by the use of
something known as a FIFO buffer, which is a temporary “file” that exists in RAM that can be written
to at high speeds by the Python program and read at high speeds by the C program. One potential pitfall
of this method was that if something caused Python to crash, the C programmay have been unaware of
what was happening and could easily go out of control.

Justification of Final Design Choice:

After a few attempts to get all of the drivers
running in C, it was determined that a pure C
software package was infeasible within the
allotted project timeline. Instead, the FIFO
hybridC/Python method mentioned above
was chosen. Despite concerns of latency
issues, this method proved to work extremely
well and no obvious latency issues were
found. Concerning the issue with the
possibility of Python crashing and causing
instabilities, this proved to be an issue that
occurred only very rarely, and could often be
resolved by restarting the microcontroller.

Figure 21 Control System Block Diagram
Figure 21 shows a high level diagram of the final design of the vehicle’s software package. The
package consists of a C program running 5 threads, or parallel processes and 4 Python programs which
also run in parallel with the C program. The C program contains a “Navigation Thread” which operates
at 200 Hz and is in charge of implementing the control for collective speed and the pitch and yaw
control systems. Next, a “Trajectory Planning Thread” allows the user to preprogram a series of
setpoints defining the trajectory that the system should take. This is where the code for performing the
figure 8 and other trajectories are located. The cycle frequency of this thread is undefined, but should
not exceed 0.5 Hz due to the system’s dynamic limitations. Next, is the “Depth Thread” which runs at
20 Hz and is in charge of monitoring the pressure from the Blue Robotics Pressure sensor to check if the
vehicle is in the water or not to activate the drive system and to provide depth feedback for the depth
control thread. The 20 Hz operating frequency was chosen to achieve successive loop closure for the

28

http://www.amazon.com/HEXBUG-Aquabot-Styles-Color-Vary/dp/B00DK25JMO/ref=sr_1_1?s=toys-and-games&ie=UTF8&qid=1460152785&sr=1-1&keywords=Robotic%2BFish
http://www.amazon.com/HEXBUG-Aquabot-Styles-Color-Vary/dp/B00DK25JMO/ref=sr_1_1?s=toys-and-games&ie=UTF8&qid=1460152785&sr=1-1&keywords=Robotic%2BFish
http://www.alphr.com/raspberry-pi/1000353/raspberry-pi-3-vs-raspberry-pi-2-vs-raspberry-pi-b-which-is-the-pi-thats-best
http://www.alphr.com/raspberry-pi/1000353/raspberry-pi-3-vs-raspberry-pi-2-vs-raspberry-pi-b-which-is-the-pi-thats-best

http://www.dsmt.com/resources/ip-rating-chart/
http://www.sams.ac.uk/nexuss/developing-auv-strategies-and-technologies-for-the-monitoring-of-benthic-impacts-in-marine-protected-areas
http://www.sams.ac.uk/nexuss/developing-auv-strategies-and-technologies-for-the-monitoring-of-benthic-impacts-in-marine-protected-areas

!ii^g]bqÇ

!ú "bee h_ -Zm^kbZelÇ

42

http://www.epectec.com/batteries/cell-comparison.html
http://www.batteryspace.com/lifepo418650battery128v800mah4x185004sflat50aratewithpcb.aspx
http://www.batteryspace.com/lifepo418650battery128v800mah4x185004sflat50aratewithpcb.aspx
http://www.batteryspace.com/lifepo418650battery128v800mah4x185004sflat50aratewithpcb.aspx
http://www.all-battery.com/TenergyLiFePO4186503.2V1100mAhPowerCellMax25A-30072-0.aspx
http://www.all-battery.com/TenergyLiFePO4186503.2V1100mAhPowerCellMax25A-30072-0.aspx
http://www.batteryspace.com/custom-lifepo4-18650-battery-12-8v-1100mah-battery-with-no-pcb.aspx
http://www.batteryspace.com/custom-lifepo4-18650-battery-12-8v-1100mah-battery-with-no-pcb.aspx

http://www.batteryspace.com/custom-lifepo4-18650-battery-12-8v-1100mah-battery-with-no-pcb.aspx

http://www.chrobotics.com/library/understanding-euler-angles
http://www.chrobotics.com/library/understanding-euler-angles
https://sites.google.com/site/mae142aero/

https://sites.google.com/site/mae142aero/
http://www.bluefinrobotics.com/assets/Papers/Achieving-High-Navigation-Accuracy-using-INSs-in-AUVsPanishJune-2011.pdf
http://www.bluefinrobotics.com/assets/Papers/Achieving-High-Navigation-Accuracy-using-INSs-in-AUVsPanishJune-2011.pdf

