Overview

This project, sponsored by Dr. Jules Jaffe at the Scripps Institute of Oceanography, serves two main purposes. The first is to create a small, quiet, low-cost, camera-equipped autonomous underwater vehicle (AUV), and the second is to generate student interest in the field of oceanography. The AUV required a design less than 20cm in length, a propulsion mechanism with low hydrodynamic and noise impact, a minimum video footage quality of 720p, and a low-cost design with an open source basis. A biotinspired approach was employed to create a unique robotic jellyfish, as seen in Figure 1 below.

Design Components

Propulsion

Motor: high torque stepper motor[1]
Materials: silicone and steel shim stock tentacles, Makerbot 3D printed ABS motor hub, polypropylene string

Mechanism: motor hub retracts tentacles, creating a jet of water as seen in Figure 2

Tentacle stiffness allows them to return to neutral position

Characteristics: quiet, low hydrodynamic impact

Controller and Software

Electrical components: Raspberry Pi 2 Model B[8], camera board[1], stepper motor controller boards[5][7], WiFi module[9], 14.8V LiPo battery pack[10], micro SD card[10], voltage regulators[11][12]

Software: Raspbian, python, OpenCV[13]

Characteristics: at surface remote communication, autonomous control, visual tracking, video recording

Waterproofing Methods

Materials: silicone O-rings and gaskets, aluminum O-ring shaft, Delrin sleeve

Characteristics: three static housing seals and one dynamic rotation seal, assembled as seen in Figure 4

Theoretical Analysis

Flow Over a Hemisphere

Preliminary MATLAB calculations of flow over a hemisphere were completed to determine the forces required of the AUV, as seen in Figure 5 below.[14]

Computer Aided Design (CAD) Mass Properties

Prototype calculations completed in Solidworks yielded preliminary information regarding the mass and volume of the design, allowing for buoyancy adjustment and steering calculations before assembly

- Center of mass: located along the central between the two steering gears
- Mass: # kg
- Volume: # m³
- Density: # kg/m³

Hardware Performance

Propulsion

- Dives at a rate of # m/s
- Propels upwards at a rate of # m/s

Steering

- Tilts at a 45° angle in any direction
- Reverses direction in # s

Run time

- Has an idle battery life of 12 hours
- Has an active battery life of # hours

Control

- Visually identifies objects using the camera
- Records up to # hours of video footage

Team Contributions

The project was divided based on team member interests, as well as individual strengths and weaknesses. Ciara was responsible for the CAD design/analysis, sponsor communication, and electronics selection. Damian tracked the budget, designed the tentacles, and did the majority of purchasing and prototyping for the team. Michael completed initial fluids analysis, setup and programmed the Raspberry Pi, and maintained the team website. Trevor was safety manager, managed all the necessary components of the AUV, and researched gasket and O-ring standards applied to waterproofing the robot.

Future Recommendations

In the future, the design could be improved through the following additions:

- A microscope camera
- Underwater communication capabilities
- Buoyancy control
- External charging ports
- Faster propulsion

Impact on Society and Safety Concerns

Due to the small and slow moving nature of the AUV, there are no significant safety concerns associated with operating the robot. The design is expected to have the following impacts on society:

- Create enthusiasm among high school students about ocean technologies
- Serve as a low-cost platform for quiet underwater observation
- Inspire more unique biomimetic AUV designs

Acknowledgements

Thank you to everyone who provided help and support for the project. A big thanks to Jules Jaffe, our sponsor, for the project and opportunity. A special thanks to Dr. Jerry Tustanowskyj and Pedro Franco for their project guidance and persistent help and advice. Thank you to Thomas Chalfant, Chris Cassidy, Ian Richardson, Steven Roberts, and Gregory Specth for their support and expertise in machining, manufacturing, and testing components for the project. Special thanks to Phuong Tran for software assistance. Thank you to the MAE 156B class section B00 for their questions and concerns that helped make the project more robust and complete. Specific thanks to Joe, Connie, Joseph, Kazuya, Conner, and Reiley for their specific feedback and interest in the project. Another thanks to Dr. Michael Tolley and Adriane Minori.

References